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A theoretical investigation is made of the effect on a gamma-gamma angular correlation of the extra-
nuclear perturbations which arise from the coupling between the magnetic dipole and electric quadrupole 
moments of the nucleus and the electromagnetic field of the electron shell in a paramagnetic crystal of axial 
symmetry. The hyperfine interaction is assumed to be time independent. Results are obtained for both single-
crystal and polycrystalline sources. For a single-crystal .source, the effect on the correlation of an external 
magnetic field parallel to the crystalline axis is investigated. The behavior of the correlation over the whole 
range of partially to fully decoupled nuclear and electronic spins is calculated. It is shown that under certain 
conditions an "angular correlation resonance experiment" is possible, i.e., an experiment in which the coin
cidence counting rate, for fixed positions of the detectors, exhibits sharp interference peaks as a function of 
the magnetic field. For a powder source, the attenuation factors are computed as a function of the hyperfine 
constants for arbitrary nuclear spin values. New possibilities for investigation of nuclear moments of excited 
states are discussed. 

I. INTRODUCTION 

THE gamma-gamma angular correlation of a 
nucleus which is surrounded by a paramagnetic 

electron shell is in general strongly perturbed by the hy
perfine interaction, i.e., the interaction between the 
electromagnetic field created by the electrons and the 
magnetic dipole and electric quadrupole moments of 
the nucleus. Moreover, if the paramagnetic ion is embed
ded in a crystal, the hyperfine interaction is appreciably 
altered by the action of the static electric field produced 
by the neighbor ions (the crystalline field). The crystal
line field interacts with the orbital motion of the 
electrons, completely or partially removing the de
generacy in the (ground) state of the free ion. Each 
electronic state in the crystalline field is characterized 
by a certain configuration of the electrons which reflects 
the symmetry of the crystal. In a crystalline field of 
noncubic symmetry the hyperfine interaction assumes 
an anisotropic form. In a field of axial symmetry this 
interaction is given by the following "spin-Hamil-
tonian"1-2: 

K=AJzIz+B(JJx+JyIv)+PlI*-iI(I+m (1) 

where J is an effective electronic angular momentum, 
and I is the spin of the nucleus. The first two terms 
in (1) represent the magnetic dipole interaction, while 
the third term describes the quadrupole interaction. 
The quantities A, B, and P are constants for a par
ticular electronic state. 

In an angular correlation experiment carried out 
under normal conditions, the perturbation of the 
correlation is further complicated by the interaction of 

* This work has been supported by the U. S. Atomic Energy 
Commission. 

fThe study of this problem was initiated in 1961 under the 
support of the National Science Foundation, while this author 
was at the University of Pennsylvania. 

1 A. Abragam and M. H. L. Pryce, Proc. Roy. Soc. (London) 
A205, 135 (1951). 

2 R. J. Elliott and K. W. H. Stevens, Proc. Roy. Soc. (London) 
A218, 553 (1953). 

the ion with the phonons of the crystal and with the 
spins of the paramagnetic neighbors (spin-relaxation 
processes). As a consequence of these interactions each 
electronic state of the ion has a finite lifetime, and the 
observed perturbation of the correlation is the result 
of an average over many electronic states, each of 
which is associated with a different set of hyperfine 
constants A, B, and P. In general, the effect of the 
spin-relaxation processes (characterized by spin-re
laxation times) is a decrease in the over-all perturbation. 
For extremely short relaxation times (high tempera
tures) the effect can be an averaging to zero of the 
magnetic field near the nucleus and a return of the 
correlation to its unperturbed form. 

The problem of computing the angular correlation 
for a general case in terms of the hyperfine constants 
and the relaxation times would be mathematically too 
complicated, even if a precise knowledge of these 
parameters for real crystals did exist. A great simplifi
cation occurs, however, if the relaxation times are such 
that during the lifetime of the intermediate nuclear 
state, the ion is almost exclusively in one electronic 
state. In this case the perturbation of the correlation 
can be treated as a static problem, and is independent 
of relaxation processes. A static environment may 
possibly be realized at low temperatures. The pertur
bation of the correlation in a static case depends only 
on the hyperfine constants, A, B, and P, associated 
with the electronic state in question. If a theoretical 
calculation of the correlation function were available 
for such a case, a comparison with the measured 
correlation could provide a determination of these 
constants. From such a determination and a knowledge 
of the wave function of the electronic state, which is 
available through paramagnetic resonance absorption 
measurements for certain crystals, information about 
nuclear moments of excited states might be extracted.3 

3 The calculations presented in this paper have been performed 
to provide the theoretical basis for an experiment in progress at 
this laboratory. 
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In this paper, a theoretical study is made of the 
perturbation of a gamma-gamma angular correlation 
caused by a static hyperfine interaction of the form (1). 
To this Hamiltonian a term is added which represents 
the interaction between an applied magnetic field along 
the crystalline axis and the electronic shell of the ion. 
The magnetic field is introduced in order that the 
coupling between the nucleus and the electron shell 
can be influenced in a controlled way. Since the angular 
correlation function of a gamma-gamma cascade for 
which the initial gamma emission is replaced by an 
absorption is identical with the angular distribution 
function of resonance fluorescence scattering, the results 
obtained here are valid for both processes.4 The calcu
lations are carried out for the important case of an 
electronic doublet state. Results are obtained for an 
arbitrary nuclear spin / of the intermediate state. Only 
the time-integrated perturbation of the correlation is 
considered, which means that the resolving time of the 
coincidence system is assumed long compared to the 
lifetime of the intermediate nuclear state. 

Studies of angular correlations perturbed by an 
isotropic magnetic hyperfine interaction (A = B) have 
been made by several authors.5-7 Explicit results for 
an anisotropic hyperfine interaction have been obtained 
by Abragam and Pound8 for the special case in which 
B is zero. 

The general theory of perturbed angular correlations 
has been treated in detail in the literature.7 The first 
step in the calculation of a perturbed correlation 
consists in solving the eigenvalue problem associated 
with the Hamiltonian which describes the interaction 
between the nucleus and the electromagnetic field of 
its surroundings. This problem is treated in Sec. II for 
the Hamiltonian described above. In Sec. I l l the 
angular correlation function is expressed in the form 
given by the general theory and the perturbation of 
the correlation is computed in terms of the eigenvalues 
and eigenvectors obtained in Sec. II. Section IV treats 
the angular correlation of a single-crystal source. The 
correlation function is investigated under the three 
separate conditions of maximum magnetic anisotropy, 
long intermediate state lifetime, and emission along the 
crystalline axis. Section V deals with the correlation 
of a crystalline powder source. A general formula is 
given for the attenuation factors. In Sec. VI the exact 
conditions under which the calculations apply are 
summarized and possible methods for measuring 
hyperfine coupling constants are discussed. 

4 The energy spread of the incident beam in the resonance 
fluorescence experiment should be larger than the energy splitting 
in the initial state, and further, the beam should be unpolarized. 

5 G. Goertzel, Phys. Rev. 70, 897 (1946). 
6 K. Alder, Helv. Phys. Acta 25, 235 (1952). 
7 For the most recent review article on the theory of angular 

correlations see: S. Devons and L. J. B. Goldfarb, in Encyclopedia 
of Physics, edited by S. Flugge (Springer-Verlag, Berlin, 1957), 
Vol. 42. 

8 A. Abragam and R. V. Pound, Phys. Rev. 92, 943 (1953). 

II. HYPERFINE INTERACTION (HAMILTONIAN 
AND EIGENSTATES) 

The hyperfine interaction in paramagnetic ions has 
been extensively investigated, mainly in connection 
with electronic paramagnetic resonance experiments 
and their interpretation. It has been shown by Abragam 
and Pryce,1 for the iron group, and by Elliott and 
Stevens,2 for the rare-earth group, that the hyperfine 
interaction associated with a great majority of the 
electronic states in crystals of axial symmetry is 
expressed by the following spin-Hamiltonian: 

K=AJJz+B(JxIx+JyIy)+PlIz"~iI(I+l)2+GJ2, 
with / = § . (2) 

Here, the z axis is identical with the symmetry axis of 
the crystal. I is the nuclear spin operator and J is, in 
general, an effective electronic spin operator. The 
magnitude of / is defined such that the multiplicity 
of the electronic state energy levels in the absence of 
the hyperfine interaction is (2.7+1). The restriction 
to the case J=\ implies that the ionic states considered 
are doublets. The anisotropic magnetic hyperfine 
interaction is represented by the first two terms in (2), 
with A and B proportional to the magnetic dipole 
moment of the nuclear state. The term involving the 
quantity P describes the interaction between the 
nuclear quadrupole moment and the electron shell, P 
being proportional to the quadrupole moment. The 
last term in (2) represents the interaction between an 
applied magnetic field Hz (along the z axis) and the 
magnetic moment of the electron shell. The parameter 
G is defined by the relation 

G=gufxBHz, (3) 

where g„ is the electronic g factor parallel to the 
crystalline axis and UB is the Bohr magneton. The 
magnitude of the applied field is assumed to be suffici
ently small so that its direct interaction with the 
nuclear magnetic moment is negligible compared to all 
the terms included in Eq. (2).9 It is further assumed 
that the direct interaction between the gradient of the 
crystalline field and the quadrupole moment of the 
nucleus can be neglected. This assumption is valid for 
the paramagnetic ions considered here. In references 
1 and 2 and Baker and Bleaney10 crystalline symmetries 
for which the spin Hamiltonian (2) is valid are discussed, 
and the quantities .4, B, P, and g„ are expressed in 
terms of the properties of the electronic states. 

The remainder of this section is devoted to the 
solution of the eigenvalue problem defined by the 
Hamiltonian (2). It is known from the general theory, 
which is reviewed in the following section, that the 
dependence of the correlation on extra nuclear effects 

9 This is generally a valid assumption for magnetic fields as 
large as several thousand gauss. 

10 J. M. Baker and B. Bleaney, Proc. Roy. Soc. (London) 
A245, 156 (1958). 
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is completely determined by the eigenvalues and 
eigenvectors of the system in the intermediate state. 
The angular momentum properties of the system are 
naturally expressed by an expansion of the eigenvectors 
|ft) of K in terms of the complete set of angular mo
mentum eigenstates \mn). The quantum numbers m 
and n are associated, respectively, with the possible 
projections, Iz and Jz, of the nuclear and (effective) 
electronic angular momenta along the % axis, for given 
quantum numbers / and J. We write 

I b)=Y, | mn)(mn | ft), (4) 
mn 

where 
K\b)=Eh\b), (5) 

and w=±J . By substitution of the expansion (4) in 
(5) and use of the orthogonality of the states \mn)f 

we obtain the eigenvalue equation 

£ l{mfnf\K\mn)-E^mfm^nl,mn\b)=Q. (6) 
mn 

The quantities I and J are coupled quantum mechani
cally to form the resultant F. The operator F2 does 
not, in general, commute with the Hamiltonian K 
(except in the special cases A = B and B=0). We note 
as a basic property of K, however, that it commutes 
with the operator Fz denned by 

F2=IZ+J2. (7) 

The eigenstates of K can therefore be constructed to 
be simultaneous eigenstates of Fz. This is explicitly 
indicated by including in the "ket" |ft) the label M 
which specifies the eigenvalues of Fz according to the 
relation 

Fz\(M)b)=M\(M)b). (8) 

It follows that the coefficients in expansion (4) are 
nonzero only if m+n—M, Further, since J has the 
value J, n has only the values zfcf and there are, 
for a given eigenstate, at most two nonzero coefficients 
(mn\b) in expansion (4). Equations (6) thus reduce for 
a given M t o a set of two equations. The associated 
secular equation of second order determines in general 
two distinct eigenvalues and eigenvectors for each M. 
With the following notation the eigenvalues and eigen
vectors of K can be expressed in a convenient general 
form. We designate the eigenvalues and eigenvectors 
by EM(±) and \Mdb), respectively, with the stipulation 
that, where M has its extreme values ( /+ ! ) and 
- - ( / + ! ) , we use the simpler notation EM and \M). 
The former notation Eh and | (M)b) (or simply | ft)) is 
used whenever we refer to the eigenvalues and eigen
vectors in general. The eigenvalues expressed in terms 
of A, B, P, and G are11 

11 These eigenvalues are also given by Bleaney [see B. Bleaney, 
Phil. Mag. 42, 441 (1951)]. Since in the correlation function only 
energy differences occur, we will drop in what follows the unim
portant constant - } ^ + [ i - | / ( / + l ) ] P . 

for M = - / + i - J + f , • • - , / - ! ; 

E± ( J + l ) = J / ^ + i / ( 2 / - l ) P ± i G , 
for M = ± (/+*), 

where 

^ = { [ M ( ^ - 2 P ) + G ] 2 + P 2 [ ( / + | ) 2 - M 2 ] } ^ 2 . (10) 

From Eqs. (6) and the unitary condition on the matrix 
of coefficients (mn | ft) we obtain for the nonzero eigen
vector coefficients (mn \ (M)b): 

(M±l =F | |M±)= (\+aM
2Yll\ 

(M=F|, ±h\M±)=±aM(l+aM
2)-in, 

for M = - I + i - . - , / - | ; ^ ; 

< ± / , ± i | d= (/+*)>= 1, for M = ± ( / + | ) ; 

where 

DM+M(A-2F)+G 
aM= . (12) 

Bl(I+i)2-M22m 

The signs in Eqs. (9) and (11) are coherent in the 
sense that one must choose consistently either the 
upper or the lower sign. 

HI. GENERAL FORM OF THE CORRELATION 
FUNCTION 

The process under consideration is the successive 
emission of two gamma rays from a nucleus which is 
coupled to the electron shell via the electric and mag
netic fields. The interaction between the nucleus and 
the shell is described by the Hamiltonian K. The 
initial, intermediate, and final (gross) states of the 
total system are characterized by sets of eigenstates of 
K, termed substates | a), | ft), and | c), respectively. The 
assembly of radioactive source atoms or ions is assumed 
to have equally populated initial substates | a). 

The direction-direction correlation function is defined 
as the relative probability for observation of the second 
gamma radiation of the cascade transition in a direction 
O2 if the first radiation is observed in the direction Oi. 
The correlation function W is thus determined by the 
transition probability Wac(t) for the emission of two 
gamma rays with definite directions and polarizations, 
the first emitted at time /=0 and the second at time /, 
in the cascade transition between a given pair of states 
I a) and | c) 8: 

r dt 
W=SY -~e~^Wac(t), 1,2 «« Jo r 

where (13) 

Wac (/) = H(a I #x I ft)(ft IH21 c)(c IH21 ft') 

X(f t1^i |a )e i ( ^-^ ' )^ . 

Hi and II2 are the Hamiltonians responsible for the 
emission of the first and second radiation, and S 

1,2 



2120 H . J . L E I S I A N D R . T . D E C K 

denotes a sum over the unobserved properties of the 
radiations. The time integral in Eq. (13) represents a 
mean over many decay processes, and r is the average 
lifetime of the intermediate state. The integration 
over t can be carried out and gives 

w= s £ <algll*>Wic>WI6'><6'lglla> (14) 
1»2 abb'c l-(ir/h)(Eb-Eb>) 

The terms in the summand of (14) which involve two 
distinct intermediate substates \b) and \b') represent 
interference effects. These effects arise from the fact 
that the intermediate state through which a cascade 
transition between \a) and \c) proceeds is a super
position of all those substates \b) for which both 
transition matrix elements (a\Hi\b) and (b\H2\c) are 
nonzero. If there is only one substate \b) with this 
property no interference effects can occur and the 
cascade transition can be said to proceed through a 
well-defined set of eigenstates | a), | b), and | c). 

In the special case in which Iz and Jz commute with 
the Hamiltonian K, the presence of interference terms 
is directly related to the perturbation of the correlation. 
Since Iz and J z commute with K, the energy eigenstates 
in this case are simultaneously eigenstates of the nuclear 
and electronic angular momentum operators. The 
nuclear and electronic spin are thus effectively un
coupled, and since the electron shell is unaltered 
during the emission of the radiation, the intermediate 
eigenstates are essentially identical with those which 
occur in the unperturbed correlation. The total effect 
of the perturbation K in this case is the removal of 
the degeneracy in the eigenvalues of the intermediate 
state which gives rise to the energy denominator 
l—(iT/fi)(Eb—Eb>) in Eq. (14). In the absence of 
interference effects, no terms with Eb7*Eb> occur and 
hence the perturbation of the intermediate state has no 
effect on the angular correlation. This property is re
ferred to in subsequent sections. 

The general direction-direction correlation function 
(14) can be reduced to the form6*8 

TF(Oi02)= E 
1(h) 11(h) 

*i*i«« (2h+l)m (2£2+l)1/2 

X lll(hkmm) F4l« (Oi) Ytj* (02), (15) 

where the spherical harmonic functions 7^(12) express 
the dependence on the angles Oi= (6h<t>i) and 02= (#2,̂ 2) 
which specify the emission directions of the first and 
second radiation, respectively. The summation indices 
h and h are even integers restricted by the conditions 

0<fti, h<21, 0<h<2Lh 0<h<2L2, (16) 

where / is the nuclear spin of the intermediate state 
and L\ and L2 are, respectively, the highest orders in 
the multipole expansions of the successive radiations. 
The factors 1(h) and 11(h) are dependent on the 

reduced matrix elements associated with the nuclear 
transitions and on the character of the radiations. 
These factors are defined in reference 6. 

For pure multipole transitions12 

1(h) H(h) 
-=Fkl(LiIAI); ,_ =Fk2(L2IcI), (17) 

(2h+l)m (2h+l)m 

where the functions Fk are tabulated in the review 
article of Biedenharn and Rose.13 In the case of mixed 
transitions the quantities 1(h) and 11(h) can be 
obtained in terms of the mixing ratios by use of the 
articles by Rose14 and Ferentz or Rosenzweig.15 The 
total effect of a perturbation in the intermediate state 
is contained in the factor III(&i&2MiM2): 

III (hhumi) = E [1 - (ir/h) (Eb- E*,)]-1 

bb' 

X S w (*!/*!) S»'(**/**), (18) 

where the quantity S6&' is determined by the coeffi
cients in the expansion (4) for the eigenstates of K: 

Sbb>(kn)= E (Im'kii\Im)(nin\b)(b'\m'n). (19) 

The bracket ( | ) denotes a Clebsch-Gordan coefficient. 
If the perturbation K vanishes, the intermediate 

state energy levels are degenerate and the factor 
[1— (iT/ti)(Eb—Eb>)~]~1 in Eq. (2) is identically one. 
It follows from the unitarity condition on the coeffi
cients (mn I b) that III becomes in this case 

I I I (AiW2) = [2(27+1)72*!+ 1]SM25M1M2, (20) 

and the correlation function reduces to the form16 

W(®) = ZAkPk(cos@), 
k 

(21) 

where © measures the angle between the emission 
directions of the radiations, and Ak is defined by the 
relation 

4*=I(*)H(i) /(24+l) . (22) 

In the following, we compute the quantity III for 
the Hamiltonian K of Eq. (2). Using the commutability 
of K with Fz and the simplifications which arise from 
the special value / = ! , we are able to carry out the 
sums over the magnetic quantum numbers. Since M 
is a good quantum number the summand in (19) is 
nonzero only for 

m+n=M; tn'+n=M', (23) 

12 Here I A, I, and Ic denote the nuclear spins of the initial, 
intermediate, and final states in the cascade process. 

13 L. C. Biedenharn and M. E. Rose, Rev. Mod. Phys. 25, 
729 (1953). 

14 M. E. Rose, Phys. Rev. 93, 477 (1954). 
15 M. Ferentz and N. Rosenzweig, Atomic Energy Commission 

Report ANL-5324, 1955 (unpublished). 
16 We consistently omit over-all multiplicative factors in the 

correlation function. 
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where M and M' are the eigenvalues of Fz for the 
states \b) and \b')y respectively. Using (23) together 
with the properties of the Clebsch-Gordan coefficients 
in the terms S&&', we conclude that III(&i&2MiM2) is 
zero unless 

Ml==iU2==M=M-M'. (24) 

From the equality of MI and j* 2 it follows that the 
correlation function (15) depends only on the angles 
0i, 02 and $—<t>i—<i>2, reflecting the rotational symmetry 
of the Hamiltonian with respect to the polar axis Oz. 
By use of relation (23) the summations over m and m' 
can be eliminated in (19). Moreover, since n has only 
the two values dzj, the sum over n in (19) gives rise 
to but two terms: 

Sw(k^)^(IMf-^\IM-i)(M-im{bf\Mf-hi) 
+ (IM'+ikn\IM+i)(M+l - | | 6 ) 

X<J'I J f '+* , -*> . (25) 
We note the property17 

Sbb>(kn)=(-iySb.b(k-»). (26) 

It is convenient to write III(&i&2MM) = III(&i&2ju) as a 
sum of two parts, the first of which contains all the 
terms in the sum over b and b' for which 11 is zero: 

III(*i*aM) = III(ftift20)5l,o 

+ E [ l - ( iV/*)(£6-£»0J" 1 

bb' 
MT*M' 

X Sw{k\ii) S&&'(£2M)5M.M-M'. (27) 

III(&i&20) contains the terms in which \b')=\b) 
together with the interference terms between the pairs 
of states with the same quantum number M. By 
means of a short calculation TH(kik$) can be expressed 
in terms of the quantities aM [defined by (12) and (10)] 
in the form18 

flAf2 2(27+1) /-» 
111(^20)= dklk2-2 £ 

2*i+l M—I+i (1 + 0M2)2 

XZilM-lkfillM-to-ilM+lkiOlIM+i)! 

X [ ( / M - ^ 2 0 | / M - | ) - ( / M + p 2 0 | / M + | ) ] , (28) 

where 
(r/hYDM2 

TM= , (29) 
1+(T/*)«Z>JI* 

and DM is the energy difference between the states 
IM+) and \M~). 

With the aid of expression (27) we can carry out the 
sum over \x in the correlation function (15) and obtain 
the final result. 

W W # ) = E I(*i)II(*2)III(*i*20)Pfcl(cos6li)Pfc2(cos^2) 
fcl&2 

I(*i) H(fa) 
+ 2 £ £ s».(*i, AT—AT') 

J f^ J f .* '* '(2*i+l)w(2ft1+l)W 

X S46'(*2, M-Mf)ahl>'-'I'(fii)aiei
1'-"'(fit) 

c o s [ ( M - M ' ) * ] - ( T / * ) ( J 2 » - £ 6 0 s in[(M-Jf ' )$] 

l+(rA)2(-E6-£6-)2 

(30) 

where the real quantities ajfcM(̂ ) are defined through 
the relation 

Yk»(d<t>) = ak»(6)ei»t (31) 

III(*i*20) and Sw (kjj) are given by Eqs. (28) and (25), 
respectively. The coefficients Sbb> describe the inter
ference effects of pairs of states | b) and | bf) with MT*M' 
in terms of the eigenvector coefficients given by Eqs. 
(11). The b, bf summation in (30) is over all pairs of 
such states. 

By use of formula (30) the correlation function can 
be obtained for arbitrary nuclear spins and mixing 
ratios. 

IV. ANGULAR CORRELATION FOR A 
SINGLE-CRYSTAL SOURCE 

The correlation function developed in the last section 
describes a gamma-ray cascade for a single-crystal 
source with a well-defined symmetry axis Oz, along 
which an external magnetic field may be applied. This 
correlation function, in general, has a rather compli
cated analytical form. We restrict consideration to 
three cases which should exhibit the important proper
ties of a correlation with a single-crystal source. The 
results are obtained in a fairly simple analytical form. 
In the first case either one of the radiations is assumed 
to be emitted along the crystalline axis. The angular 
correlation function can formally be written here in the 
same way as in the case of a powder source. In the 
second case the hyperfine interaction is assumed to 
have a maximum anisotropy, such that # = 0 . This 
condition leads to a considerable simplification in the 
eigenvalue problem itself. In the third case, the lifetime 
of the intermediate state is assumed to be such that 
the width of the state is small compared to the mean 
hyperfine splitting. Under certain conditions interesting 
resonance effects can occur here. 

A. Radiation Along Symmetry Axis 

The correlation function (30) is considerably simpli
fied in the case that either radiation is observed along 
the symmetry axis. If the first gamma ray is emitted 
along Cz, $1 is zero and it follows from the relation 

17 The coefficients (mn | (M)b) are real in our problem. 
18 We note that III(£00)=III(0£0) =2(27+1)5*0. 

Yk"(0,4>) = ak*(Q)e ""(IT) OMO (32) 
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that the correlation function contains only the first 
term in (30) and becomes 

W(62)= L I(^1)II(^2)III(^i^20)^2(co^2), (33) 

with III(&i&20) given by Eq. (28). In general I(k) is 
different from II (k) and hence the correlation function 
is changed if the roles of the first and the second 
radiation are interchanged. 

The absence of the second term of (30) in (33) means 
that there is no interference between states of different 
M. This can be understood in terms of the conservation 
of angular momentum.19 Since the component of total 
angular momentum along the direction of emission of 
the first radiation is conserved, the intermediate state 
in this case has a definite Fz, and interference terms 
can arise only between those substates which have the 
same M value. 

The perturbation of the correlation function (33) 
can be expressed through "attenuation factors" Gk 

defined by rewriting (33) in the form20 

W(fi*) = T, Gk^AkPk(cos02), 
k 

(34) 

where Ak is given by (22), and 

2&+1 I(ft') i-h aM
2 

21+1 *'*> I (ft) jf—i+i (l+aM
2)2 

Xt(IM-W0\IM-±)-(IM+W0\IM+m 

X [ ( / M ~ p 0 | / M - | ) - ( / M + p 0 | / M + | ) ] . (35) 

The quantity TM defined by Eq. (29), contains the 
dependence of the correlation function on the lifetime 
r of the intermediate state. If the lifetime is sufficiently 
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FIG. 1. Attenuation factor G2 for a cascade with spin sequence 
0-1-0 plotted as a function of the magnetic anisotropy B/A for 
different values of the width of the intermediate state. 

19 Although Fz is not the true angular momentum of the system 
the conservation law can nevertheless be formally applied. 

20 If the second radiation is emitted along the crystalline axis, 
Eq. (34) contains 0i instead of B% and (r*(2) is replaced by Gkil). 
The latter is defined by (35) with l(k) replaced by Il(jfe). 

long such that the width Y = n/r of the intermediate 
state is much smaller than the hyperfine splitting 
between the states, the correlation is strongly perturbed 
and TM can be approximated by unity. From Eq. (29) 
the "strong perturbation" condition is seen to be 

Z V » r 2 , for all M with | M\ ?*I+h (36) 

where DM is the energy difference between the states 
|M+) and \M—). If the lifetime is very short, such 
that D M ^ P , the quantities TM approach zero and 
Gk becomes one. It follows in this case that the corre
lation is unperturbed as expected. 

Formula (35) can be used to compute the correlation 
function for a given set of parameters A, B, P, and G. 
It is of interest to study the correlation of a particular 
gamma-ray cascade as a function of the magnetic 
anisotropy B/A. We choose, as an example, G=P=0 
and a cascade with spin sequence 0-1-0. The complete 
correlation in this case is given by W(6) = I+G2A2 
XP2(cos0). Figure (1) shows the attenuation factor G2 
as a function of B (in units of A) for a fixed value of A. 
The different curves correspond to different values for 
the lifetime of the intermediate state. For B equal to 
zero (see also the following subsection), Gi has the 
value unity for all lifetimes. This means that the 
correlation W(B) is unperturbed in the case of a maxi
mum magnetic anisotropy. If we choose as a repre
sentative value of A, 10~2 cm-1, the curve T = A 
corresponds to a nuclear lifetime r equal to approxi
mately 5 X10~10 sec. 

It is particularly interesting to discuss the correlation 
W(B) as a function of the strength of the external 
magnetic field applied along the crystalline axis. For a 
strong magnetic field, the G term in the Hamiltonian 
K dominates the hyperfine coupling terms (G^>Ay By P). 
According to Eq. (12) the factor ^ / ( l + a ^ 2 ) 2 in (35) 
becomes very small in this case and the attenuation 
factor GK approaches the value one. The correlation 
in a strong magnetic field is therefore unperturbed. 
This result has been noted before in the special case of 
an isotropic hyperfine interaction.5'6 It can be under
stood on the basis of the general discussion in Sec. III. 
We apply a perturbation treatment to the eigenvalue 
problem associated with the Hamiltonian K, where the 
(unperturbed) Hamiltonian KQ is defined as the G term. 
Since Iz and Jz commute with iTo, the electronic spin 
is, in first approximation, decoupled from the nuclear 
spin; and it follows that a perturbation of the corre
lation can arise only through interference terms. With 
one radiation emitted along the crystalline axis, how
ever, a cascade transition between a particular set of 
initial and final substates can proceed only through the 
two intermediate substates |Af+) and \M—) with 
well-defined total angular momentum projection M. 
Moreover, since the electron shell, during the emission 
of the first gamma ray, remains in the initial state 
characterized by a definite projection, na, of the elec
tronic spin, there is but one intermediate substate, 
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namely, that with tn=M—na, which can be reached 
in the cascade, and interference terms cannot occur. 
The correlation is, therefore, unperturbed. 

With the aid of formula (35) the correlation can be 
computed for arbitrary magnetic fields, that is, over 
the whole range of partly decoupled nuclear and elec
tronic spins. As an example, we consider again the 
cascade with spin sequence 0-1-0, and choose _ P = 0 
and B=--4:A. In Fig. 2 the attenuation factor G2 for 
this case is plotted for different lifetimes as a function 
of the strength G of the external magnetic field. In the 
strong perturbation limit (r<<G4) a magnetic field of 
about 5000 G is needed to reach a decoupling of G2 

= 0.99, when the values A^10~2 cm - 1 and g N « 2 are 
assumed. 

B. Maximum Anisotropy (Z? = 0) 

The hyperfine interaction which occurs in certain 
ionic states in axially symmetric crystals is described 
to a good approximation by the Hamiltonian (2) with 
B equal to zero.10 Since K in this case commutes with 
Iz and Jzy the energy eigenstates | b) are simultaneously 
eigenstates of the projections of the nuclear and 
electronic angular momenta. The eigenvalues and 
eigenvectors, characterized by m and ny can be written 
as 

Eb=Emn=tnnA + tm?-±I(I+l)2P+nG; 

\b)= \mn). 

I t follows from Eqs. (18) and (19) that the factor 
III(&I&2MM) in this case has the form 

I I I ( * x M = E E [ 1 - (iT/h)(Emn-Em,n)-]~i 

X (Im'kin I Im) (Itn'kw \ Im). (38) 

Introducing the eigenvalues (37), we obtain 

III(k xkm) = E (Im'kui I Im) (Im'k& \ Im) 

X [ { 1 - ( i r A ) [ ( w 2 - w ' 2 ) P - | M ] } - i 

+ { 1 - {ir/h)l(m'-m^)P+\ixA'}}-^. (39) 

I t is interesting to note that UI(kik2fi) is independent 
of G, which means that the correlation is not affected 
by the magnetic field along the crystalline axis.21 If 
the quadrupole interaction can be neglected ( P = 0 ) , 
Eq. (39) is reduced to the form 

IIl(kik2fx) = 8klk2 
21+1 r 

2ki+lLl+(iT/2h)iiA 

+ 1. (40) 
l-(ir/2h)fiAJ 

21 This statement is not restricted to the case of a magnetic 
field parallel to the axis, but is valid for an arbitrary magnetic 
field direction, since the component of the electronic g factor 
perpendicular to the axis is usually zero for ions with 2*=0. 

r 1 r i ' i " t " 1 1 — 1 i i i t ; 1 r—T-

0-1-0 CASCADE 

B=4A 

P-0 

Gffl 

FIG. 2. Attenuation factor G2 for a cascade with spin sequence 
0-1-0 plotted as a function of the external magnetic field for 
different lifetimes of the intermediate state. 

We consider here two special cases, one where the 
radiation is emitted along the crystalline axis, and the 
other where the crystalline axis is perpendicular to the 
plane defined by the source and the two detectors 
(subsequently referred to as the detector plane). In 
the first, only the terms in the correlation function 
with /x=0 are nonvanishing (see subsection A). I t 
follows that (39) in this case is identical with (20), 
and hence the correlation is restored to the unperturbed 
form. This result, again, can be viewed as a consequence 
of the absence of interference terms. 

In the case where the crystalline axis is perpendicular 
to the detector plane the correlation can, in general, 
be expressed as8 

with 

B,= H 

^(*) = £ *„*•>*; * = * ! - * , , 

1(h) I I (k) 

(41) 

*i** (2/fe1+l)1« (2*2+l)»« 

XlII(*iMa*1"0r/2K ! ' '( ir/2), (42) 

and the functions ak"(ir/2) defined by relation (31). 
If P here is zero, the perturbation can be expressed 

by attenuation factors Gw, which depend only on the 
Hamiltonian K and are independent of the properties 
of the radiations. These factors are defined by rewriting 
(41) in the form 

Hr(*) = Z G ^ / ' » (43) 

where 6M is the value of the coefficient £M in (41) for 
an unperturbed correlation. Using (42), (20), and (40) 
we find 

1 1 
G>—2 

L 1 + (ir/2h)fjLA 1 - (ir/2h)nA. 
(44) 

A comparison of this result with the attenuation factor 
obtained by Alder6 for a correlation perturbed by the 



2124 H . J . L E I S I A N D R. T . D E C K 

interaction between the nucleus and an external mag
netic field perpendicular to the detector plane reveals 
the close connection between Alder's case and the case 
considered here ( £ = 0 ) . The attenuation factor given 
by (44) can be interpreted as the mean value of two 
attenuation factors which arise from effective internal 
magnetic fields Heu along the positive and negative z 
directions, respectively. The fields are produced by the 
electron shell and correspond to two possible orien
tations of the (effective) electronic spin, with 

HQil=U/gN^- (45) 

Here gx is the nuclear g factor and M.V the nuclear 
magneton. 

A close connection between the case B=0 and cases 
previously treated in the literature exists even where 
there is a nonvanishing quadrupole interaction. The 
factor III(&I&2AO, given by Eq. (39) can be inter
preted as the mean value of the factors III(&I&2M) and 
III(&i&2—M) associated with the problem of a correlation 
perturbed by an external magnetic field (acting on the 
nucleus) and a quadrupole interaction caused by the 
crystalline field.8,22,23 [Compare, e.g., Eq. (39) with 
Eq. (77) of reference 8.] The relation between the hyper-
fine coupling constant A and the external magnetic field 
is given by expression (45). By means of this relation
ship, the known results for the correlation problem men
tioned can be directly applied to the case treated here. 

C. Strong Perturbation 

Under certain conditions the interference terms in 
the correlation function (14), i.e., the terms which 
involve distinct intermediate states | b) and | bf), become 
relatively small and can be neglected. This occurs 
when the lifetime of the intermediate state is much 
longer than the quantity h/(Eb—Eb'). In this limit of 
"strong perturbation" the time integral of the cross 
terms in Eq. (13) becomes vanishingly small due to 
the rapidly oscillating exponential factor in Wac(t). 
Since the time integral represents an average over many 
decay processes, the disappearance of the interference 
terms in the strong perturbation limit can be viewed 
as a consequence of the random distribution of the time 
dependent phase factors of the states b and b', resulting 
from the randomness in the time of emission of the 
second gamma ray. Alternatively, one can say that 
the interference between states b and bf vanishes 
whenever the energy separation between the states is 
much greater than the natural width fi/r of the inter
mediate state. In this case the system can be said to 
pass through a well-defined intermediate energy state 
in making the transition between the initial and the 
final substate. 

22 K. Alder, H. Albers-Schonberg, E. Heer, and T. B. Novey, 
Helv. Phys. Acta. 26, 761 (1953). 

23 K. Alder, E. Matthias, W. Schneider, and R. M. Steffen 
(to be published). 

In discussing the strong perturbation limit it is 
convenient to distinguish two cases according to 
whether or not degeneracies occur in the eigenstates of 
the Hamiltonian K. 

(1) Eigenstates of K Nondegenerate 

In general, the eigenstates of the Hamiltonian K in 
the intermediate state are nondegenerate and the 
strong perturbation condition can be expressed by the 
relation 

| £ 6 - £ 6 , | » r , (46) 

where Y — h/r is the width of the intermediate state. 
If relation (46) is fulfilled for all pairs of states, the 
cross terms in the correlation function (14) can be 
neglected and Eq. (30) assumes the form 

W0(6ld2) = L I(*i)II(ft2)IIIo(*i*aD) 
k\k2 

XPkiicasOOPkticoset), (47) 

where III0(&i&20) is the "strong perturbation par t" of 
III(&i&20), i.e., expression (28) with T , M = 1 . Formula 
(47) is valid for arbitrary emission directions of the 
two gamma rays. The disappearance of the <i> depend
ence in this equation should be noted. I t means, in 
particular, that the correlation for a single-crystal 
source with axis of symmetry perpendicular to the 
detector plane is completely isotropic. This result 
follows directly from the disappearance of the interfer
ence terms. In this case the second gamma ray is 
always emitted from a state with definite M. Hence the 
second radiation, connecting two states with definite 
angular momentum Fg, has also a well-defined angular 
momentum projection along Oz and the conjugate 
angular coordinate is, therefore, completely unde
termined. I t follows that the correlation function is 
independent of the angle <£. 

For a nuclear spin / equal to or less than two, we 
obtain for the nonzero coefficients Illo^ifoO) the 
results: 

IIIo(000) = 

IHo(220) = 

IIIo(220) = 

IIIo(220) = 

IIIo(420) = 

IIIo(440) = 

= 2(27+1), 

= (3/5)(2-3X1/2), 

S (8 /S)( l -X,) , 

= ( l /7)(14-X1 / 2-9X s / 2) , 

= (5/21)(2X1/2-3X3/2), 

= (5/63)(14-20Xi /2-5X3/2) 
with 

dM2 GL-M" 
XM = 1 # 

(l+aM
2)2 (l+a_M2)2 

(2) Degeneracies in Eigenstates of K 
(Interference Effects) 

If the parameters A, B, P, and G in the Hamiltonian 
of Eq. (2) have values such that certain of the eigen-
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states are degenerate (or nearly degenerate), relation 
(46) is not satisfied for these states. The correlation 
function in this case is a sum of W0(61,62), Eq. (47), 
and the interference terms of Eq. (30) which involve 
the degenerate (or nearly degenerate) states. This 
means that whenever the energy separation between 
two intermediate substates is smaller than or of the 
order of the width T, it is impossible to determine the 
substate through which a cascade transition has passed 
and the substates interfere. In certain cases, however, 
interference terms which arise in this manner vanish 
as a result of the selection rules to be discussed below. 

In the following a discussion of possible degeneracies 
in the eigenstates of the Hamiltonian (2) is given. 

(a) An important case of degeneracy occurs for an 
isotropic magnetic interaction (A — B) with G=P—0. 
The eigenvalue spectrum contains only two different 
energies corresponding to the total spin quantum 
numbers F = / + § and F—I—\, respectively. The 
high degree of degeneracy gives rise to a considerable 
number of interference terms which, in general, do not 
cancel. The effect of this degeneracy on the correlation 
function of a powder source is treated in Sec. V. An 
example of an (A — B) degeneracy with G and P 
different from zero is discussed in this section (see 
Fig. 7). 

(b) A quadrupole interaction of appropriate magni
tude (P=^A) compensates the A term of the magnetic 
interaction and causes a degeneracy of the pairs of 
states with quantum numbers M and —M. The corre
sponding interference terms are, in general, non-
vanishing. 

(c) In the absence of the external magnetic field 
(G=0), each state | (M)b) is degenerate with a state 
I (—M)b'), and the Hamiltonian K commutes not 
only with Fz but also with the time reversal operator. 
Each of the two degenerate states is essentially the 
time reverse of the other. It can be proved that the 
quantity S&&' of Eq. (19) is zero for these states unless 
(— 1)2M=1, i.e., unless M is an integer. Therefore, the 
interference terms between the degenerate states are 
zero whenever / has an integral value. If / is a half 
integer there are in general nonvanishing interference 
effects. 

(d) A study of the eigenvalues of K in Eqs. (9) for 
given values of A, B, and P shows that degeneracies 
can occur at certain discrete values of the external 
field (values of G) other than zero.24 The interference 
terms between the degenerate states at these critical 
values Gc cause the strongly perturbed correlation to 
assume a resonant behavior as a function of G. This 
behavior makes possible an "angular correlation reso-

24 In the present discussion it is assumed that B^O. In the 
case of maximum anisotropy (£ = 0), level crossings at particular 
values of G also occur. The corresponding interference terms in 
this case are bound to be zero, however, since they involve always 
pairs of states with different n values, and only levels with 
can be reached in a cascade transition originating from | a). 

nance experiment" which consists in a measurement 
of the coincidence counting rate for a fixed position of 
the two detectors as a function of the applied magnetic 
field.25 The width of the "resonance line" in such an 
experiment depends essentially on the lifetime of the 
intermediate state and can become arbitrarily narrow 
for a sufficiently long lifetime. The resonance phe
nomenon is not present if one radiation is measured 
along the crystalline axis, since then only states with 
the same M can interfere, and the crossing of the 
corresponding levels is prohibited by the general rule 
which states that levels with the same symmetry never 
cross. A convenient arrangement for an angular corre
lation resonance experiment is one where the crystalline 
axis is perpendicular to the detector plane, i.e., 61—62 
= 7r/2. From Eq. (30) it follows in this case that the 
correlation function in the vicinity of two crossing 
levels Eb and Ev (with distinct M values) is given by 

W($) = WO(T/2,T/2)+WR($), 
where 

i(*0 n(*«) 
wR($)=2j: Sw(*i, j f - j i f o klk2 (2ki+l)m (2k2+l)1/2 

X Sw(k2, M-Mf)akl
M-M,(ir/2)ak2

M~Mf(ir/2) 
(49) 

X-
coslM~M')$l-[(Eb-Eb>)/rlsm[(M-Mf)$~] 

l+(Eb-Eb,y/T* 

The resonant behavior of W($) as a function of the 
external magnetic field for a fixed angle $ results 
essentially from the magnetic field dependence of 
(Eh—E^) in WR. The quantities Wo and Sbb> vary 
slowly with the magnetic field in the vicinity of the 
critical field. 

From the form of WR($) in (49) it follows that 
certain "selection rules" have to be fulfilled in order 
that the resonant term be nonvanishing. From the 
properties of the functions 0,^(6), denned through the 
spherical harmonics, it can be seen that interference 
effects can be observed only between those pairs of 
levels for which 

\M—Mf\ <min{(&i)max,(&2)max}, (50) 

and (since 6=w/2) 

\M—M'\= even integer. (51) 

At the critical magnetic field value for which the 
levels Eb and Eb> exactly cross, the angular dependence 
of the resonant term WR in the correlation function 
(49) is expressed through the factor cos[(M—M')3Q. 

26 It has come to our attention recently that similar phenomena 
have been investigated in connection with resonance fluorescence 
experiments in the field of atomic spectroscopy: F. D. Colegrove, 
P. A. Franken, R. R. Lewis, and R. H. Sands, Phys. Rev. Letters 
3, 420 (1959); P. A. Franken, Phys. Rev. 121, 508 (1961); M. E. 
Rose and R. L. Carovillano, ibid. 122, 1185 (1961). Rose and 
Carovillano point out that resonance effects should occur in 
angular correlations. 
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FIG. 3. (a) Eigenvalue spectrum for 7 = 1 as a function of the 
external magnetic field, (b) Anisotropy of the correlation for a 
0-1-0 cascade plotted as a function of the external magnetic 
field. The interference peak corresponds to the crossing of the 
levels £3/2 and £_i/2(+). 

WR has therefore extreme values $n=mr/\M—M'\ ; 
w= 1, 2, 3, • •. The resonance effect in an experiment 
can be maximized by making measurements at two 
angles for which the resonant term has opposite sign. 
For example, if the interference is between levels for 
which \M—Af'|=2, the maximum effect is obtained 
by measuring as a function of the magnetic field the 
quantity [W(w)-W(>ir/2)yW(j/2) termed the "ani
sotropy f unction.'' 

The theoretical variation of the anisotropy function 
with external field strength in the region of an energy 
level crossing is shown graphically in Figs. 3(b), 6, and 
7(b) for three example correlations. Figure 3 refers to 
a cascade with spin sequence 0-1-0. The energy 
spectrum of the hyperfine interaction in the inter
mediate state as a function of the magnetic field 
parameter G is shown in Fig. 3(a). The hyperfine 
constants are assumed here to have the values B=4A 
and P = 0 . The spectrum shows five level crossings. 
The three that occur at G = 0 do not give rise to a 
resonance effect since / has an integral value. [See 
the discussion of the (G=0) degeneracy given above.] 
Moreover, the resonant term arising from the crossing 
of the £$ and £$(+) levels vanishes due to the chosen 
geometry according to rule (51). The effect on the 
anisotropy function of the level crossing (f; — J + ) 2 6 

is shown in Fig. 3(b) for an assumed level width 
r = (1/20)A. We like to emphasize that the existence 
of a sharp interference peak presumes a sufficiently 
small width of the intermediate state, such that 

condition (46) is fulfilled for all pairs of states (with 
nonzero interference term) except for the pair (f; —1+) 
in the vicinity of the critical field. 

For arbitrary A and B (and P=0) the critical 
magnetic field Hc at the crossing (f; —1+) has the 
value 

/B2 \ A 
(52) 

The width of the resonance line at half-maximum is 
given by the approximate relation 

/ 1B2\ T 
A i J - 2 1 + , (53) 

\ 2,42/g„M0 

where A and B appear only through their ratio. For a 
correlation with known spins and mixing ratios the 
height of the resonance peak at the critical field Hc is, 
in general, a function of the parameters A, B, and P. 
In Fig. 4, the maximum of the resonance peak associated 
with the crossing (f; — J + ) is plotted as a function of 
the magnetic anisotropy B/A with P equal to zero. 
The plot shows that the maximum of the interference 
peak is large if B is much larger than A, and has a 
value of 36% for B=4A. Assuming the representative 
values 4̂ = 10~2 cm"1, and g n ~ 2 , the values of r and 
Hc for the example of Fig. 3 are: r ~ 10~8 sec, Hc~ 800 G. 

In Figs. 5 and 6, plots similar to those of Fig. 3 are 
made for a cascade with spin sequence \—f—\ with 
various lifetimes for the intermediate state. The energy 
spectrum, Fig. 5, exhibits five level crossings, only two 
of which, occurring at G c =0, satisfy the selection rules 
(50) and (51). The interference terms between M and 
—M states do not vanish in this case since / has a 
half-integral value. The width of the resonance line at 
G = 0 is given by the formula 

/ B \ 

gnMfl 
(54) 

Again, the width depends on A and B only through 
their ratio. 
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26 We denote the crossing of two levels with the subscripts of 
the corresponding energies. 
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FIG. 4. Anisotropy of the 0-1-0 correlation at the critical 
magnetic field plotted as a function of the magnetic anisotropy 
B/A. 
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Figure 7 refers to the example of the 0-1-0 cascade 
in the case of an isotropic magnetic interaction (A = B). 
Figures 7 (a) and 7 (b) show the eigenvalue spectrum and 
anisotropy function plotted against the external field 
for P—A. The critical field strength of the resonance is 
given for arbitrary A and P by the expression 

Hc=P/gllfiB. (55) 

In the limit of vanishing quadrupole interaction, P = 0 , 
the position of the level crossing (f; — f + ) coincides 
with that of the crossing (—|>i+) and a resonance 
line equal to the sum of the two shown occurs at G=0. 
The width is 

A#«3r/g„M£. (56) 

This situation is realized in a gaseous source and in a 
crystalline source of cubic symmetry. 

V. ANGULAR CORRELATION FOR A 
POWDER SOURCE 

A powder source represents an assembly of single 
crystals with their symmetry axes oriented at random. 
The correlation for such a source without external field 

0 5 10 15 20 25 
6 [A] 

FIG. 5. Eigenvalue spectrum for 7=3 /2 as a function 
of the external magnetic field. 

(G=0) can be obtained by an averaging of the corre
lation function for a single-crystal source over all 
orientations of the frame of reference with fixed emission 
directions for the radiations. Replacing the product of 
spherical harmonics in the correlation function (15) by 
the average value of the product, (l/4tTr)Pkl(cos<d) 
XS^fc^^, the powder correlation function is obtained 
in the form8 

W(@) = ZkGkAkPk(cos@)} (57) 

where the attenuation factors Gk are given by 

1 
Gk= £ I I I(^W). (58) 

2(27+1) M 

Using Eq. (18) we obtain for Gk the formula 

XlSw{k,M-M')J, (59) 

T 1 1 j 1 r 

k - V ' / z CASCADE 

6 [A] 

FIG. 6. Anisotropy of a §-f-| correlation plotted as a function 
of the external magnetic field for different lifetimes of the inter
mediate state. 

with Sw(k, M—Mr) given by expression (25). Formula 
(59) can be considerably simplified in the strong 
perturbation limit, where \Eb—Eh>\ is much larger 
than r for all pairs of distinct states except those with 
M'=—M (which are degenerate since G=0). The 
result is 

1 1 i-\ aM
2 

Gk»= £ 
2&+1 27+1 *—z+* (1+aM2)2 

X{L(IM-ikO\IM-^)-(IM+m\IM+i)J 

-Ll+(-l)2MJ(IM+ik, - 2 M | 7 , - M + f ) 2 } . (60) 

The last term in the above formula arises from the 
interference between the states | (M)b) and | (—M)br) 
and is nonzero only if J is a half-integer. Equation 
(60) is not valid if there are degeneracies with non-

0.00 t^Z- ' ' 1 1 1 -3= 
-15 -1.0 -Q5 OJD 05 \0 15 

FIG. 7. (a) Eigenvalue spectrum for 7 = 1 and A—B — P as a 
function of the external magnetic field, (b) Anisotropy of the 
0-1-0 correlation with A=B = P plotted as a function of the 
external magnetic field. 
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B[A] 

FIG. 8. (a) Attenuation factor for / = 1 plotted as a function of 
the magnetic anisotropy B/A for different lifetimes of the inter
mediate state, (b) Eigenvalue spectrum as a function of B/A. 

vanishing interference effects other than those which 
arise from the fact that G is zero. 

We state the result obtained from the exact formula 
(59) for the model case of a cascade with 1 = 1 . The 
complete correlation in this case is given by the ex
pression27 

where 

G 2 = i 1 - 3 -

W(fl) = l+G*A2P2(cosB), 

01/2* 

(l+ai/22) 
-+fl+3-2 L ( 

^1/2" 

l+2a 1/2 

(l+a1 / 2
2)2-

r2 

r2 

'1/2 

1+01/22 r 2 + } [ f . 4 + p + z ) 1 / 2 ] 2 

2+a1 / 2
2 T2 

+ 
l + a i / 2 2 r 2 + i [ P + P - £ > 1 / 2 ] 2 

(61) 

Figure 8 shows the attenuation factor G2, given by (61) 
plotted as a function of B for a fixed value of A ( P = 0 ) 
and different lifetimes. A large peak in G2 occurs at 
A = B. The behavior of the attenuation factor can be 
qualitatively understood on the basis of the energy 
level scheme (see Fig. 8). We consider first the case 
where T is much smaller than A. P'or an isotropic 
hyperfine interaction (B=A) the attenuation factor 
is given in the limit of small T by the "hard-core 
value"6 

(Gk)min=l-k(k+\)/(2I+l)\ 

On the other hand, the attenuation factor is given by 

27 The attenuation factors for 7 = 2 have also been computed. 

the strong perturbation value G2° in the region of B 
where |E±3/2—£±1/2+ | » F . If B approaches A, the 
interference effects due to the crossing ( ± 1 / 2 + ; 
± 3 / 2 ) become important and give rise to the sharp 
peak at B = A. I t is obvious that in this case a very 
small deviation from the isotropy of the magnetic 
interaction can result in a large change in the attenu
ation factor. 

In the case of a shorter lifetime, for which T>Ay 

interference effects involving the states | ± 1/2 —) have 
to be included in G2. In the limit T»^4 the attenuation 
factor is identically one and the correlation is unper
turbed. 

VI. CONCLUSIONS 

Before discussing possible applications connected 
with the results of the present paper, it is useful to 
summarize the assumptions made in treating the 
correlation problem. The assumptions can be stated 
as follows: 

(a) The energy substates in the initial state are 
assumed to be equally populated. This condition is 
fulfilled for temperatures as low as the temperatures 
in the liquid-helium range if the system is in thermal 
equilibrium with its surroundings. 

(b) The interaction between the nucleus and the 
electron shell in the intermediate state is assumed to 
be time independent. This implies that, during the 
lifetime of the intermediate state, there are no major 
rearrangements in the electron shell which result in 
appreciable changes in the electric and magnetic fields 
near the nucleus.28 

(c) The angular correlation is assumed to be un
affected by the recoil motion associated with the 
emission of the first radiation.29 

The investigation of nuclear moments of excited 
states by study of angular correlations perturbed by 
the hyperfine interaction has to proceed in two steps. 
In the first step the measured perturbation of the 
correlation is compared with the theoretically computed 
perturbation which involves the hyperfine constants 
as parameters. The comparison between experiment 
and theory should provide a determination of the 
hyperfine constants. In the second step the nuclear 
moment of the intermediate state is deduced from the 
hyperfine constants. In order that the latter step be 
possible, sufficient knowledge of the wave function of 
the electronic state must be available. At present this 
knowledge is available to a large extent for para
magnetic crystals of the rare-earth group, which have 

28 Such effects are to be expected if the initial state of the 
gamma-ray cascade is excited by an electron capture process. 
Certainly, in a resonance fluorescence experiment, no such 
effects are possible. 

29 There are no known experimental results for gamma-gamma 
angular correlation or resonance fluorescence experiments which 
indicate that the correlations are affected by the recoil motion. 
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been investigated mainly by means of paramagnetic 
resonance experiments.2,30,31 

The results of the present paper offer interesting 
possibilities for determination of the hyperfine con
stants (step one). In cases where paramagnetic reso
nance data exist for a particular rare-earth crystal, 
direct experimental values of g{1 and A/B are usually 
known for the ionic ground state. (The P term is 
generally small.) If for such a crystal an angular 
correlation experiment or a resonance fluorescence 
experiment can be carried out with the ion in the 
ground state, the known values of gn and A/B greatly 
facilitate the determination of a magnetic hyperfine 
constant. The value of A can, in fact, be deduced di
rectly for known A/B and gn from an angular correla
tion resonance experiment in which the critical magnetic 
field is measured [see, e.g., Eq. (52)]. This method 
requires neither the knowledge of the unperturbed 
correlation nor the value of the intermediate state 
lifetime.32 

An alternative determination of a magnetic hyper
fine constant can be based on the decoupling experiment 
(Sec. IV-A). From the knowledge of the ratio A/B and 
the lifetime of the intermediate state, the attenuation 
factor GK can be plotted as a function of G, in the 
manner of Fig. 2. A value of GK measured for a known 
decoupling field strength H corresponds to a value 
G/A — guixsH/A, from which the hyperfine constant A 
can be extracted. In the strong perturbation limit the 
knowledge of the lifetime is not required. 

It is interesting to note that the occurrence of sharp 
resonance lines is not restricted to the case of an 
anisotropic magnetic hyperfine interaction. The result 
in the final paragraph of Sec. IV C shows that an 

30 K. D. Bowers and J. Owen, Reports on Progress in Physics 
(The Physical Society, London, 1955), Vol. 18, p. 304. 

3 1 1 . Lindgren, Nucl. Phys. 32, 151 (1961). 
32 The lifetime could be obtained from the measured width of 

the resonance peak. [See Eqs. (53), (54), and (56).] 

isotropic hyperfine interaction which is realized for 
instance in a gaseous source can produce interference 
peaks in the angular correlation. Thus, a correlation ex
periment with a gaseous source would provide an 
alternative to a correlation experiment using single-
crystal sources and low temperatures. The former 
experiment could be used to obtain information about 
nuclear moments for paramagnetic atoms for which the 
electronic wave functions are sufficiently well known. 
In this paper only electronic doublet states have been 
considered and the results are, therefore, valid only for 
an electronic spin of J. The calculation of a perturbed 
angular correlation for larger electronic spin values 
would be very complicated. However, if one is interested 
only in the critical magnetic fields for an angular corre
lation resonance experiment with a gaseous source, it is 
sufficient to inspect the energy spectrum of the hyperfine 
interaction and to compute the critical field values for 
which the energy levels of interfering states cross. The 
critical fields are only functions of two hyperfine con
stants A and P. (The electronic g factor is usually 
known.) Thus, from a measurement of the critical 
magnetic fields the hyperfine constants could be 
extracted. With the external field chosen parallel to 
the detector plane, the interference term has the energy 
and angular dependence of WR($) in Eq. (49), and the 
selection rules derived from Eq. (49) are valid for 
arbitrary electronic spin / . 
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